Source code for arviz_plots.plots.loo_pit_plot

"""Plot loo pit."""
from collections.abc import Mapping, Sequence
from typing import Any, Literal

import xarray as xr
from arviz_base import convert_to_datatree
from arviz_stats.loo import loo_pit

from arviz_plots.plots.ecdf_plot import plot_ecdf_pit


[docs] def plot_loo_pit( dt, ci_prob=None, coverage=False, var_names=None, filter_vars=None, # pylint: disable=unused-argument group="posterior_predictive", coords=None, # pylint: disable=unused-argument sample_dims=None, plot_collection=None, backend=None, labeller=None, aes_by_visuals: Mapping[ Literal[ "ecdf_lines", "credible_interval", "xlabel", "ylabel", "title", ], Sequence[str], ] = None, visuals: Mapping[ Literal[ "ecdf_lines", "credible_interval", "xlabel", "ylabel", "title", ], Mapping[str, Any] | Literal[False], ] = None, stats: Mapping[Literal["ecdf_pit"], Mapping[str, Any] | xr.Dataset] = None, **pc_kwargs, ): r"""LOO-PIT Δ-ECDF values with simultaneous confidence envelope. For a calibrated model the LOO Probability Integral Transform (PIT) values, $p(\tilde{y}_i \le y_i \mid y_{-i})$, should be uniformly distributed. Where $y_i$ represents the observed data for index $i$ and $\tilde y_i$ represents the posterior predictive sample at index $i$. $y_{-i}$ indicates we have left out the $i$-th observation. LOO-PIT values are computed using the PSIS-LOO-CV method described in [1]_ and [2]_. This plot shows the empirical cumulative distribution function (ECDF) of the LOO-PIT values. To make the plot easier to interpret, we plot the Δ-ECDF, that is, the difference between the observed ECDF and the expected CDF. Simultaneous confidence bands are computed using the method described in described in [3]_. Alternatively, we can visualize the coverage of the central posterior credible intervals by setting ``coverage=True``. This allows us to assess whether the credible intervals includes the observed values. We can obtain the coverage of the central intervals from the LOO-PIT by replacing the LOO-PIT with two times the absolute difference between the LOO-PIT values and 0.5. For more details on how to interpret this plot, see https://arviz-devs.github.io/EABM/Chapters/Prior_posterior_predictive_checks.html#pit-ecdfs. Parameters ---------- dt : DataTree Input data ci_prob : float, optional Indicates the probability that should be contained within the plotted credible interval. Defaults to ``rcParams["stats.ci_prob"]`` coverage : bool, optional If True, plot the coverage of the central posterior credible intervals. Defaults to False. var_names : str or list of str, optional One or more variables to be plotted. Currently only one variable is supported. Prefix the variables by ~ when you want to exclude them from the plot. filter_vars : {None, “like”, “regex”}, optional, default=None If None (default), interpret var_names as the real variables names. If “like”, interpret var_names as substrings of the real variables names. If “regex”, interpret var_names as regular expressions on the real variables names. coords : dict, optional Coordinates to plot. sample_dims : str or sequence of hashable, optional Dimensions to reduce unless mapped to an aesthetic. Defaults to ``rcParams["data.sample_dims"]`` plot_collection : PlotCollection, optional backend : {"matplotlib", "bokeh", "plotly"}, optional labeller : labeller, optional aes_by_visuals : mapping of {str : sequence of str}, optional Mapping of visuals to aesthetics that should use their mapping in `plot_collection` when plotted. Valid keys are the same as for `visuals`. visuals : mapping of {str : mapping or False}, optional Valid keys are: * ecdf_lines -> passed to :func:`~arviz_plots.visuals.ecdf_line` * credible_interval -> passed to :func:`~arviz_plots.visuals.ci_line_y` * xlabel -> passed to :func:`~arviz_plots.visuals.labelled_x` * ylabel -> passed to :func:`~arviz_plots.visuals.labelled_y` * title -> passed to :func:`~arviz_plots.visuals.labelled_title` stats : mapping, optional Valid keys are: * ecdf_pit -> passed to :func:`~arviz_stats.ecdf_utils.ecdf_pit`. Default is ``{"n_simulation": 1000}``. **pc_kwargs Passed to :class:`arviz_plots.PlotCollection.grid` Returns ------- PlotCollection Examples -------- Plot the ecdf-PIT for the crabs hurdle-negative-binomial dataset. .. plot:: :context: close-figs >>> from arviz_plots import plot_loo_pit, style >>> style.use("arviz-variat") >>> from arviz_base import load_arviz_data >>> dt = load_arviz_data('radon') >>> plot_loo_pit(dt) Plot the coverage for the crabs hurdle-negative-binomial dataset. .. plot:: :context: close-figs >>> plot_loo_pit(dt, coverage=True) .. minigallery:: plot_loo_pit References ---------- .. [1] Vehtari et al. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4 .. [2] Vehtari et al. Pareto Smoothed Importance Sampling. Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html .. [3] Säilynoja et al. *Graphical test for discrete uniformity and its applications in goodness-of-fit evaluation and multiple sample comparison*. Statistics and Computing 32(32). (2022) https://doi.org/10.1007/s11222-022-10090-6 """ if visuals is None: visuals = {} else: visuals = visuals.copy() if isinstance(sample_dims, str): sample_dims = [sample_dims] if group != "posterior_predictive": raise ValueError(f"Group {group} not supported. Only 'posterior_predictive' is supported.") lpv = loo_pit(dt) new_dt = convert_to_datatree(lpv, group="loo_pit") visuals.setdefault("ylabel", {}) visuals.setdefault("remove_axis", False) visuals.setdefault("xlabel", {"text": "LOO-PIT"}) plot_collection = plot_ecdf_pit( new_dt, var_names=var_names, filter_vars=filter_vars, group="loo_pit", coords=coords, sample_dims=lpv.dims, ci_prob=ci_prob, coverage=coverage, plot_collection=plot_collection, backend=backend, labeller=labeller, aes_by_visuals=aes_by_visuals, visuals=visuals, stats=stats, **pc_kwargs, ) return plot_collection