arviz_plots.PlotMatrix#
- class arviz_plots.PlotMatrix(data, facet_dims, aes=None, backend=None, figure_kwargs=None, **kwargs)[source]#
Low level base class for pairwise matrix arranges of plots.
- Attributes:
viz
xarray.DataTree
Information about the visual elements in the plot as a DataTree.
aes
xarray.DataTree
Information about aesthetic mapping as a DataTree.
See also
arviz_plots.PlotCollection
Unidimensional facetting manager
- __init__(data, facet_dims, aes=None, backend=None, figure_kwargs=None, **kwargs)[source]#
Initialize a PlotMatrix.
- Parameters:
- data
xarray.Dataset
Data for which to generate the requested matrix layout of plots.
- facet_dims
list
of hashable List of dimensions to use for facetting. It also support the
__variable__
indicator to facet across variables.- aesmapping of {
str
list
of hashable}, optional Dictionary with aesthetics as keys and as values a list of the dimensions it should be mapped to. See
generate_aes_dt
for more details.- backend
str
, optional Plotting backend. It will be stored and passed down to the plotting functions when using methods like
map
.- **kwargsmapping, optional
Dictionary with aesthetics as keys and as values a list of the values that should be taken by that aesthetic.
- data
Methods
__init__
(data, facet_dims[, aes, backend, ...])Initialize a PlotMatrix.
add_legend
(dim[, aes, artist_kwargs, title, ...])Add a legend for the given visual/aesthetic to the plot.
allocate_artist
(fun_label, data, all_loop_dims)Allocate an visual in the
viz
DataTree.generate_aes_dt
(aes[, data])Generate the aesthetic mappings.
get_aes_as_dataset
(aes_key)Get the values of the provided aes_key for all variables as a Dataset.
get_aes_kwargs
(aes, var_name, selection)Get the aesthetic mappings for the given variable and selection as a dictionary.
get_target
(var_name, selection[, ...])Get the target that corresponds to the given variable and selection.
get_viz
(artist_name[, var_name, sel])Get element from
.viz
that corresponds to the provided subset.grid
(data[, cols, rows, backend, figure_kwargs])Instatiate a PlotCollection and generate a plot grid iterating over rows and columns.
map
(fun[, fun_label, data, coords, ...])Apply the given plotting function along the diagonal with the corresponding aesthetics.
map_col
(fun[, fun_label, index, data, ...])Apply the given plotting function along the column with the corresponding aesthetics.
map_lower
(*args, **kwargs)Call
map_triangle
withtriangle="lower"
.map_row
(fun[, fun_label, index, data, ...])Apply the given plotting function along the row with the corresponding aesthetics.
map_triangle
(fun[, fun_label, data, ...])Apply the given plotting function to all plots with the corresponding aesthetics.
map_upper
(*args, **kwargs)Call
map_triangle
withtriangle="upper"
.rename_visuals
([name_dict])Rename visual data variables in the
viz
DataTree.savefig
(filename, **kwargs)Call the backend function to save this figure.
set_fixed_var_attributes
(index[, orientation])Set fixed variable attributes for the current orientation according to given index.
show
()Call the backend function to show this figure.
store_in_artist_da
(aux_artist, fun_label, ...)Store visual object or array into its preallocated DataArray within
viz
.update_aes
([ignore_aes, coords])Update list of aesthetics after indicating ignores and extra subsets.
update_aes_from_dataset
(aes_key, dataset)Update the values of aes_key with those in the provided Dataset.
wrap
(data[, cols, col_wrap, backend, ...])Instatiate a PlotCollection and generate a plot grid iterating over subsets and wrapping.
Attributes
Information about aesthetic mapping as a DataTree.
Return all aesthetics with a mapping defined as a set.
coords
Information about slicing operation to always be applied on the PlotCollection.
Dataset to be used as data for plotting.
Facetting dimensions.
Information about the visual elements in the plot as a DataTree.